Applications Avancées des Transformers : Au-delà du NLP
Explorez les applications avancées des Transformers dans différents domaines, des modèles multimodaux aux architectures émergentes.
InSkillCoach
Applications Avancées des Transformers : Au-delà du NLP
Les Transformers ont évolué bien au-delà de leur application initiale en traitement du langage naturel. Découvrez les applications les plus avancées et les tendances émergentes.
Modèles Multimodaux
1. CLIP (Contrastive Language-Image Pre-training)
class CLIP(nn.Module):
def __init__(self, embed_dim, image_resolution, vision_layers, vision_width,
vision_patch_size, context_length, vocab_size, transformer_width,
transformer_heads, transformer_layers):
super().__init__()
# Encoder d'images
self.visual = VisionTransformer(
image_resolution, vision_patch_size, 3,
embed_dim, vision_layers, vision_width
)
# Encoder de texte
self.transformer = Transformer(
context_length, vocab_size, embed_dim,
transformer_heads, transformer_layers
)
# Projection
self.text_projection = nn.Parameter(torch.empty(embed_dim, embed_dim))
self.image_projection = nn.Parameter(torch.empty(embed_dim, embed_dim))
def encode_image(self, image):
return self.visual(image)
def encode_text(self, text):
return self.transformer(text)
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# Normalisation
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# Similarité
similarity = torch.matmul(image_features, text_features.T)
return similarity
2. DALL-E et Stable Diffusion
class DiffusionTransformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim, num_patches):
super().__init__()
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(
dim=dim,
depth=depth,
heads=heads,
dim_head=dim // heads,
mlp_dim=mlp_dim
)
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)',
p1=16, p2=16),
nn.Linear(16 * 16 * 3, dim)
)
def forward(self, x, t):
x = self.to_patch_embedding(x)
x = x + self.pos_embedding
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b=x.shape[0])
x = torch.cat((cls_tokens, x), dim=1)
x = self.transformer(x)
return x[:, 0]
Zero-Shot et Few-Shot Learning
1. GPT-3 et Zero-Shot Learning
class ZeroShotClassifier:
def __init__(self, model_name="gpt-3"):
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
def classify(self, text, labels):
prompt = f"Classifiez le texte suivant dans l'une des catégories : {', '.join(labels)}\n\nTexte : {text}\n\nCatégorie :"
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=100)
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return prediction.split("Catégorie :")[-1].strip()
2. Few-Shot Learning avec Prompt Engineering
class FewShotLearner:
def __init__(self, model_name="gpt-3"):
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
def create_prompt(self, examples, query):
prompt = "Exemples :\n"
for ex in examples:
prompt += f"Texte : {ex['text']}\nCatégorie : {ex['label']}\n\n"
prompt += f"Texte : {query}\nCatégorie :"
return prompt
def predict(self, examples, query):
prompt = self.create_prompt(examples, query)
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=100)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
Architectures Émergentes
1. Sparse Transformers
class SparseAttention(nn.Module):
def __init__(self, dim, num_heads, block_size=64):
super().__init__()
self.num_heads = num_heads
self.block_size = block_size
self.scale = dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3)
self.proj = nn.Linear(dim, dim)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
q, k, v = qkv.unbind(2)
# Calcul de l'attention par blocs
attn = torch.zeros(B, self.num_heads, N, N, device=x.device)
for i in range(0, N, self.block_size):
for j in range(0, N, self.block_size):
q_block = q[:, i:i+self.block_size]
k_block = k[:, j:j+self.block_size]
attn_block = torch.matmul(q_block, k_block.transpose(-2, -1)) * self.scale
attn[:, :, i:i+self.block_size, j:j+self.block_size] = attn_block
attn = attn.softmax(dim=-1)
x = torch.matmul(attn, v)
x = x.transpose(1, 2).reshape(B, N, C)
return self.proj(x)
2. Linear Transformers
class LinearAttention(nn.Module):
def __init__(self, dim, num_heads):
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3)
self.proj = nn.Linear(dim, dim)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
q, k, v = qkv.unbind(2)
# Approximation linéaire
q = q.softmax(dim=-1)
k = k.softmax(dim=-2)
context = torch.einsum('bhnd,bhne->bhde', k, v)
out = torch.einsum('bhnd,bhde->bhne', q, context)
out = out.transpose(1, 2).reshape(B, N, C)
return self.proj(out)
Applications Spécifiques
1. Traitement du Signal
class SignalTransformer(nn.Module):
def __init__(self, input_dim, num_heads, num_layers, dim_feedforward):
super().__init__()
self.embedding = nn.Linear(input_dim, dim_feedforward)
self.pos_encoder = PositionalEncoding(dim_feedforward)
encoder_layer = nn.TransformerEncoderLayer(
d_model=dim_feedforward,
nhead=num_heads,
dim_feedforward=dim_feedforward
)
self.transformer_encoder = nn.TransformerEncoder(
encoder_layer,
num_layers=num_layers
)
self.decoder = nn.Linear(dim_feedforward, input_dim)
def forward(self, x):
x = self.embedding(x)
x = self.pos_encoder(x)
x = self.transformer_encoder(x)
return self.decoder(x)
2. Graph Transformers
class GraphTransformer(nn.Module):
def __init__(self, node_dim, edge_dim, num_heads, num_layers):
super().__init__()
self.node_embedding = nn.Linear(node_dim, node_dim)
self.edge_embedding = nn.Linear(edge_dim, node_dim)
self.layers = nn.ModuleList([
GraphTransformerLayer(node_dim, num_heads)
for _ in range(num_layers)
])
def forward(self, x, edge_index, edge_attr):
x = self.node_embedding(x)
edge_attr = self.edge_embedding(edge_attr)
for layer in self.layers:
x = layer(x, edge_index, edge_attr)
return x
Tendances Futures
-
Modèles Plus Efficaces
- Réduction de la consommation énergétique
- Optimisation de la mémoire
- Accélération de l’inférence
-
Intégration Multimodale
- Fusion de modalités plus sophistiquée
- Modèles unifiés
- Transfer learning cross-modal
-
Robustesse et Éthique
- Gestion des biais
- Explicabilité
- Fairness
Conclusion
Les Transformers continuent d’évoluer et de se diversifier, trouvant des applications dans des domaines toujours plus variés. Leur flexibilité et leur capacité d’adaptation en font une architecture fondamentale pour l’avenir de l’IA.
Ressources Complémentaires
À propos de InSkillCoach
Expert en formation et technologies
Coach spécialisé dans les technologies avancées et l'IA, porté par GNeurone Inc.
Certifications:
- AWS Certified Solutions Architect – Professional
- Certifications Google Cloud
- Microsoft Certified: DevOps Engineer Expert
- Certified Kubernetes Administrator (CKA)
- CompTIA Security+
Commentaires
Les commentaires sont alimentés par GitHub Discussions
Connectez-vous avec GitHub pour participer à la discussion