Architectures Avancées des Transformers : Innovations et Applications
Exploration approfondie des architectures avancées des Transformers, des modèles multimodaux aux architectures adaptatives. Implémentations détaillées et cas d'usage.
InSkillCoach
Architectures Avancées des Transformers : Innovations et Applications
Découvrez les architectures avancées des Transformers, des modèles multimodaux aux architectures adaptatives, avec des implémentations détaillées.
Modèles Multimodaux
1. CLIP (Contrastive Language-Image Pre-training)
class CLIP(nn.Module):
def __init__(self, image_encoder, text_encoder, projection_dim=512):
super().__init__()
self.image_encoder = image_encoder
self.text_encoder = text_encoder
self.image_projection = nn.Linear(
image_encoder.output_dim,
projection_dim
)
self.text_projection = nn.Linear(
text_encoder.output_dim,
projection_dim
)
def forward(self, image, text):
# Encodage des images
image_features = self.image_encoder(image)
image_features = self.image_projection(image_features)
# Encodage du texte
text_features = self.text_encoder(text)
text_features = self.text_projection(text_features)
# Normalisation
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
# Calcul de la similarité
similarity = torch.matmul(
image_features,
text_features.t()
)
return similarity
2. DALL-E
class DALLE(nn.Module):
def __init__(self, vae, text_encoder, image_decoder):
super().__init__()
self.vae = vae
self.text_encoder = text_encoder
self.image_decoder = image_decoder
def forward(self, text, image=None):
# Encodage du texte
text_features = self.text_encoder(text)
if image is not None:
# Mode reconstruction
image_tokens = self.vae.encode(image)
reconstructed = self.image_decoder(
image_tokens,
text_features
)
return reconstructed
else:
# Mode génération
image_tokens = self.image_decoder.generate(
text_features
)
return self.vae.decode(image_tokens)
Architectures Adaptatives
1. Mixture of Experts (MoE)
class MixtureOfExperts(nn.Module):
def __init__(self, num_experts, expert_size, routing_size):
super().__init__()
self.num_experts = num_experts
self.expert_size = expert_size
# Experts
self.experts = nn.ModuleList([
nn.Linear(routing_size, expert_size)
for _ in range(num_experts)
])
# Router
self.router = nn.Linear(routing_size, num_experts)
def forward(self, x):
# Routage
router_logits = self.router(x)
router_probs = F.softmax(router_logits, dim=-1)
# Sélection des experts
expert_outputs = []
for i in range(self.num_experts):
expert_output = self.experts[i](x)
expert_outputs.append(
expert_output * router_probs[:, i].unsqueeze(-1)
)
# Combinaison des sorties
return sum(expert_outputs)
2. Sparse Attention
class SparseAttention(nn.Module):
def __init__(self, dim, num_heads, block_size=64):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.block_size = block_size
self.qkv = nn.Linear(dim, dim * 3)
self.proj = nn.Linear(dim, dim)
def forward(self, x):
B, N, C = x.shape
# Projection QKV
qkv = self.qkv(x).reshape(
B, N, 3, self.num_heads, C // self.num_heads
).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# Calcul de l'attention par blocs
output = torch.zeros_like(q)
for i in range(0, N, self.block_size):
for j in range(0, N, self.block_size):
# Attention pour le bloc
q_block = q[:, :, i:i+self.block_size]
k_block = k[:, :, j:j+self.block_size]
v_block = v[:, :, j:j+self.block_size]
# Calcul de l'attention
attn = torch.matmul(
q_block,
k_block.transpose(-2, -1)
)
attn = attn.softmax(dim=-1)
# Mise à jour de la sortie
output[:, :, i:i+self.block_size] += torch.matmul(
attn,
v_block
)
return self.proj(output.transpose(1, 2).reshape(B, N, C))
Architectures Spécialisées
1. Longformer
class LongformerAttention(nn.Module):
def __init__(self, dim, num_heads, window_size=512):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.qkv = nn.Linear(dim, dim * 3)
self.proj = nn.Linear(dim, dim)
def forward(self, x, attention_mask=None):
B, N, C = x.shape
# Projection QKV
qkv = self.qkv(x).reshape(
B, N, 3, self.num_heads, C // self.num_heads
).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# Attention par fenêtre glissante
output = torch.zeros_like(q)
for i in range(0, N, self.window_size):
# Fenêtre glissante
window_end = min(i + self.window_size, N)
q_window = q[:, :, i:window_end]
k_window = k[:, :, i:window_end]
v_window = v[:, :, i:window_end]
# Attention locale
attn = torch.matmul(
q_window,
k_window.transpose(-2, -1)
)
if attention_mask is not None:
attn = attn.masked_fill(
attention_mask[:, i:window_end, i:window_end] == 0,
float('-inf')
)
attn = attn.softmax(dim=-1)
# Mise à jour de la sortie
output[:, :, i:window_end] = torch.matmul(attn, v_window)
return self.proj(output.transpose(1, 2).reshape(B, N, C))
2. Performer
class PerformerAttention(nn.Module):
def __init__(self, dim, num_heads, feature_dim=256):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.feature_dim = feature_dim
self.q_proj = nn.Linear(dim, dim)
self.k_proj = nn.Linear(dim, dim)
self.v_proj = nn.Linear(dim, dim)
self.out_proj = nn.Linear(dim, dim)
# Projections aléatoires
self.random_features = torch.randn(
feature_dim,
num_heads
)
def forward(self, x):
B, N, C = x.shape
# Projections QKV
q = self.q_proj(x).reshape(
B, N, self.num_heads, C // self.num_heads
).transpose(1, 2)
k = self.k_proj(x).reshape(
B, N, self.num_heads, C // self.num_heads
).transpose(1, 2)
v = self.v_proj(x).reshape(
B, N, self.num_heads, C // self.num_heads
).transpose(1, 2)
# Approximation de l'attention
q_prime = torch.matmul(q, self.random_features)
k_prime = torch.matmul(k, self.random_features)
# Calcul de l'attention approximative
attn = torch.matmul(q_prime, k_prime.transpose(-2, -1))
attn = attn.softmax(dim=-1)
# Mise à jour de la sortie
output = torch.matmul(attn, v)
output = output.transpose(1, 2).reshape(B, N, C)
return self.out_proj(output)
Applications Avancées
1. Traitement de Documents Longs
class LongDocumentTransformer(nn.Module):
def __init__(self, dim, num_heads, num_layers):
super().__init__()
self.layers = nn.ModuleList([
LongformerAttention(dim, num_heads)
for _ in range(num_layers)
])
self.norm = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, dim * 4),
nn.GELU(),
nn.Linear(dim * 4, dim)
)
def forward(self, x, attention_mask=None):
for layer in self.layers:
x = layer(x, attention_mask)
x = self.norm(x)
x = self.mlp(x)
return x
2. Traitement Multimodal
class MultimodalTransformer(nn.Module):
def __init__(self, image_dim, text_dim, fusion_dim):
super().__init__()
self.image_encoder = ImageEncoder(image_dim)
self.text_encoder = TextEncoder(text_dim)
self.fusion = nn.Sequential(
nn.Linear(image_dim + text_dim, fusion_dim),
nn.LayerNorm(fusion_dim),
nn.GELU(),
nn.Linear(fusion_dim, fusion_dim)
)
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(
d_model=fusion_dim,
nhead=8,
dim_feedforward=fusion_dim * 4
),
num_layers=6
)
def forward(self, image, text):
# Encodage des modalités
image_features = self.image_encoder(image)
text_features = self.text_encoder(text)
# Fusion des caractéristiques
combined = torch.cat([image_features, text_features], dim=-1)
fused = self.fusion(combined)
# Traitement par le transformer
output = self.transformer(fused)
return output
Benchmarks et Comparaisons
1. Métriques de Performance
def benchmark_architectures():
architectures = {
"Standard": StandardTransformer(),
"Longformer": LongformerTransformer(),
"Performer": PerformerTransformer(),
"MoE": MoETransformer()
}
results = {}
for name, model in architectures.items():
# Test de vitesse
speed = measure_inference_time(model)
# Test de mémoire
memory = measure_memory_usage(model)
# Test de précision
accuracy = measure_accuracy(model)
results[name] = {
"speed": speed,
"memory": memory,
"accuracy": accuracy
}
return results
2. Comparaison des Architectures
Architecture | Longueur Max | Mémoire | Vitesse | Précision |
---|---|---|---|---|
Standard | 512 | 1x | 1x | 100% |
Longformer | 4096 | 2x | 1.5x | 98% |
Performer | 2048 | 1.5x | 2x | 97% |
MoE | 1024 | 3x | 1.2x | 99% |
Recommandations d’Utilisation
-
Pour les Documents Longs
- Longformer
- Attention par fenêtre glissante
- Optimisation mémoire
-
Pour le Traitement Rapide
- Performer
- Approximation d’attention
- Performance optimisée
-
Pour les Modèles Spécialisés
- MoE
- Experts spécialisés
- Adaptation dynamique
Conclusion
Les architectures avancées des Transformers offrent des solutions innovantes pour différents cas d’usage, du traitement de documents longs au traitement multimodal.
Ressources Complémentaires
À propos de InSkillCoach
Expert en formation et technologies
Coach spécialisé dans les technologies avancées et l'IA, porté par GNeurone Inc.
Certifications:
- AWS Certified Solutions Architect – Professional
- Certifications Google Cloud
- Microsoft Certified: DevOps Engineer Expert
- Certified Kubernetes Administrator (CKA)
- CompTIA Security+
Commentaires
Les commentaires sont alimentés par GitHub Discussions
Connectez-vous avec GitHub pour participer à la discussion